Number fields with prescribed norms (with an appendix by Yonatan Harpaz and Olivier Wittenberg)

نویسندگان

چکیده

We study the distribution of extensions a number field $k$ with fixed abelian Galois group $G$, from which given finite set elements are norms. In particular, we show existence such extensions. Along way, that Hasse norm principle holds for $100\%$ $G$-extensions $k$, when ordered by conductor. The appendix contains an alternative purely geometric proof our result.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

Ranks of Elliptic Curves with Prescribed Torsion over Number Fields

We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...

متن کامل

Tight Frame Completions with Prescribed Norms

Let H be a finite dimensional (real or complex) Hilbert space and let {ai}i=1 be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {fi}pi=1 in H we find necessary and sufficient conditions for the existence of r ∈ N∪{∞} and a Bessel sequence G = {gi}i=1 in H such that F ∪ G is a tight frame for H and ‖gi‖ = ai for 1 ≤ i ≤ r. Moreover, in this case we compute ...

متن کامل

Maps With Prescribed Tension Fields

We consider maps into a Riemannian manifold of nonpositive sectional curvature with prescribed tension field. We derive a priori estimates and solve a Dirichlet problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2022

ISSN: ['0010-2571', '1420-8946']

DOI: https://doi.org/10.4171/cmh/528